Natural Refrigerant Training Summit

Building a Sustainable Workforce

CO2 Transcritical Systems: Focus on High Pressure Expansion Valve Operation

Bruce R. Hierlmeier PE

Zero Zone, Inc.

Natural Refrigerant Training Summit Thank you to our sponsors!

Premium Sponsors

Basic Sponsors

Who We Are

A 501c3 nonprofit working to create a sustainable future for supermarket refrigeration by removing barriers to natural refrigerant adoption.

160+
member
companies

55K+
food retail
locations

Goals

- Build a sustainable technician workforce
- Increase funding for natural refrigerant equipment
- Improve technology options, education, and awareness

R744Carbon Dioxide

R290 Propane

R717 Ammonia

Your Presenter

Bruce R Hierlmeier PE

Director or Regulatory Compliance and

Refrigeration Technology

Zero Zone, Inc.

Today's Agenda

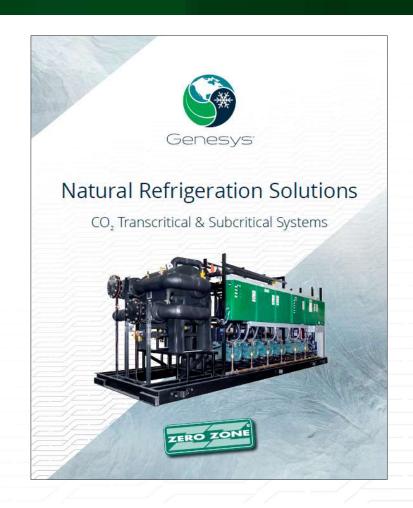
- Company Introduction
- Safety
- CO₂ Component Overview
- Pressure Enthalpy Diagram and the High-Pressure Expansion Valve
- CO₂ System Designs
- Questions

Learning Objectives

- Understand safety concerns when working with CO₂ and proper PPE
- Understand the role of the high-pressure valve and flash gas in system efficiency
- Understand the designs used to protect against system over pressurization

Refrigeration Systems

- **Outstanding Engineering Support**
- Customer and Field Support
- Ease of Serviceability
- Longevity of Equipment
- **Custom Solutions**



Genesys

Display Cases

- It is important to know that all refrigerant gases could be fatal simply by a lack of oxygen through air displacement.
- Most refrigerant gases including CO₂ are denser than air, so they tend to collect near the floor.

- CO₂ is not only an asphyxiant gas; it's also a narcotic agent which reduces awarness of the danger.
- Our breathing rate is controlled by CO₂ levels in our blood. The higher the level, the faster we breathe it in.

Effects of CO₂ Over Exposure

- A lack of oxygen is caused when Carbon Dioxide replaces air. When larger amounts of CO₂ are present, a narcotic effect is to be expected. Smaller amounts of CO₂ in the air typically target the respiratory system. Symptoms can include irritation of the nasal passages, throat, and eyes—as well as induce coughing.
- Consequences of elevated CO₂ levels in the air (results based on normal healthy adults)
 - 0.04% Normal atmospheric concentration (400 ppm)
 - 2% Breathing rate increases by 50% (2000 ppm)
 - 3% At 10 minutes exposure; breathing rate increases by 100%
 - 5% Breathing rate increases by 300%, headache and sweating may begin after about an hour. (5000 ppm)
 - 8-10% After 10 to 15 minutes exposure, the onset of symptoms such as headache, dizziness, buzzing in the ears, increased blood pressure, high pulse rate, excitation, and nausea will appear.
 - 10-18% After only a few minutes, cramps similar to epileptic fits, loss of consciousness, and shock (i.e., a sharp drop in blood pressure) will occur. Victims should recover very quickly in fresh air.
 - 18-20% Symptoms are similar to those of a stroke.

Safety Placards

NFPA:

- For CO₂ HEALTH = 2, FLAMMABILITY = 0, INSTABILITY = 0,
- For **R-404A** HEALTH = 2, FLAMMABILITY = 1, INSTABILITY = 0

Personal Protection Methods

- Due to the high pressures encountered, greater awareness needs to be exercised around CO₂ systems.
- Safety glasses, face shields, long sleeves, and gloves are needed to prevent an encounter with a jet of hot, high pressure discharge gas or being hit with a blast of dry ice.
- Closing off lines containing liquid CO₂ will cause pressure in the line to rise over 1000 psi causing a possible rupture.
- Depressurizing lines containing liquid will make dry ice plugs. If heat is then applied at the wrong spot, the line may rupture.
- Numerous relief valves on the system are a blast hazard or could cause fright if relieving unexpectedly.

PPE Minimum

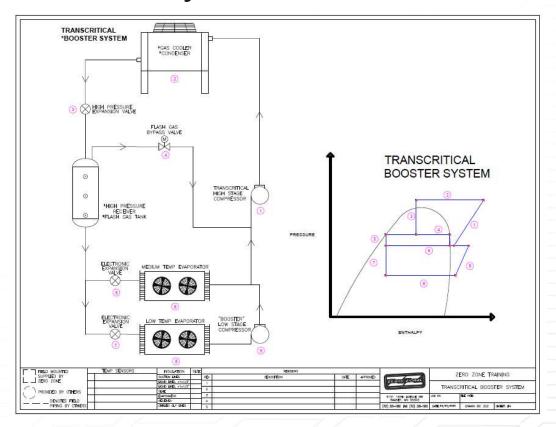
- Minimum Requirements:
 - For standard operations such as making adjustments and using standard diagnostic equipment.
 - Safety Glasses with side shields
 - Long sleeve shirt or jacket
 - Safety shoes with leather tops
 - Leather or mechanics gloves

PPE Higher Risk operations

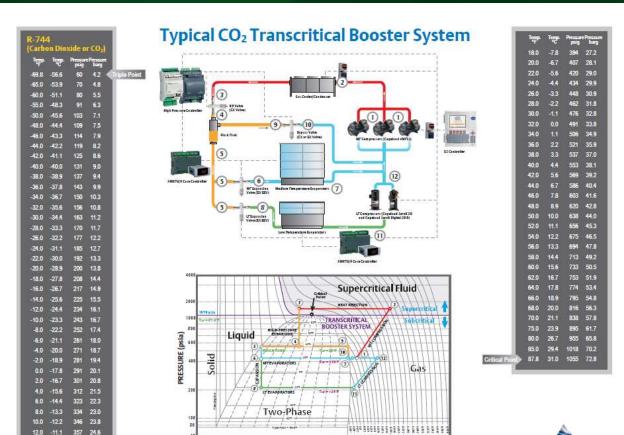
- Higher risk operations include operations such as:
 - Charging the system
 - Opening pipes of unknown pressure
 - Opening pipes where liquid may be present
 - Initial system start up
- PPE for higher risk operations include:
 - All minimal PPE previously discussed
 - Face shield
 - Cryogenic rated apron
 - Cryogenic rated gloves

System Types

- Subcritical- Condenses below 88 F
 - Water Cooled (high side/pressure in receiver 638 psig)
 - Cascade (high side/pressure in receiver 407 psig)
- Transcritical- Rejects heat above 88F
 - Hot day (high side pressure gas cooler 1400 psig , receiver pressure 525 psig)
 - Cold days operates as subcritical (high side pressure condenser 700 psig, receiver pressure 525 psig)

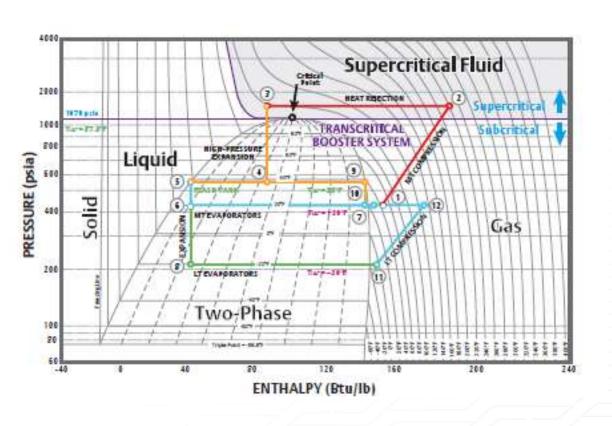

- **Transcritical:** System may gas cool above 88°F or may operate in subcritical mode. It depends on the weather.
 - Single stage one compressor (saturated suction needs to be above 0°F).
 - Can be two compressors a lower pressure compressor (booster) pumping gas into a high stage compressor.
 - Evaporator Direct expansion or liquid overfeed.
 - May include energy efficient components like ejectors and parallel compressors.
- Gas Cooler/Condenser: Cools high stage compressor discharge gas.
- High Pressure Valve: (HPEV) drops pressure from condenser/gas cooler to flash tank pressure. Keeps
 pressure high in the gas cooler/condenser -similar to a back pressure valve.
- **Flash Tank:** Operates like a receiver and accumulator.
- Flash Gas Valve: (FGBV) controls pressure in flash tank similar to a back pressure valve.

- Parallel Compressor: A compressor that runs in parallel to the high stage compressor but at a higher suction pressure than the high stage compressor.
- **Ejector:** Similar to garden hose sprayer where passing fluid sucks up a gas or a liquid.
- **Electronic Expansion Valve:** EEV for short, expands liquid CO₂ into the evaporator.
- Adiabatic condenser/gas cooler: Water is sprayed on pads that are on the inlet air going to the condenser/gas cooler. Evaporating water cools the air.

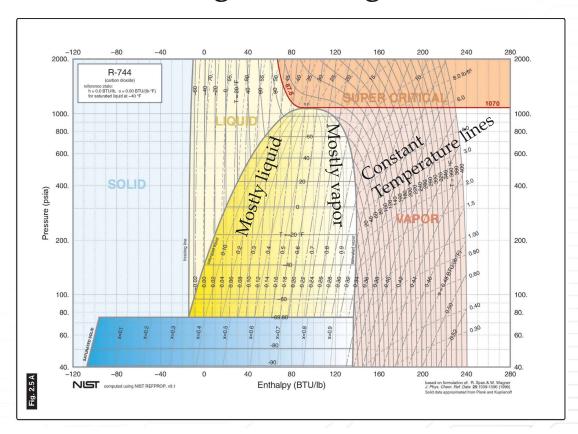

Basic System Architecture

12.0 -11.1 357 24.6 14.0 -10.0 369 25.5

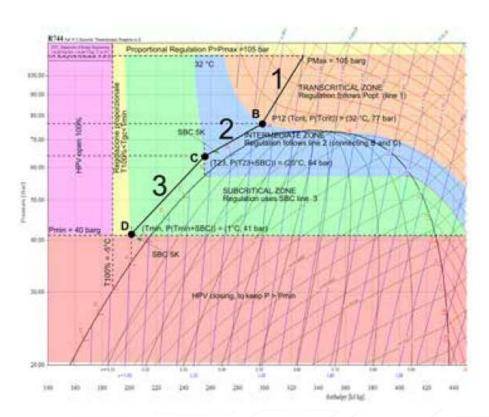
16.0 -8.9 382 26.3



ENTHALPY (Btu/Ib)

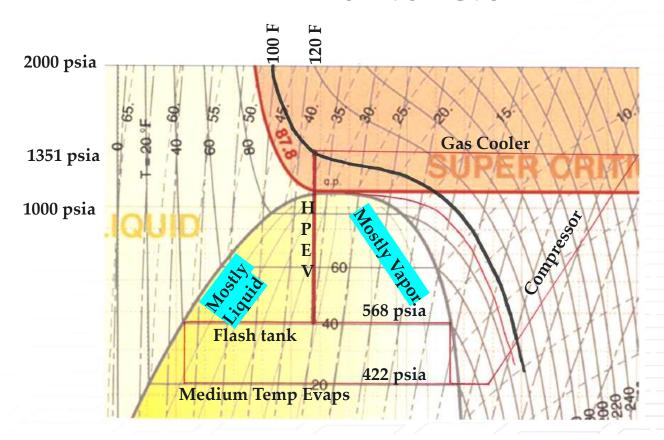

- Info on a PH Diagram
 - Pressure
 - Enthalpy (Energy)
 - Temperature
 - Liquid
 - Vapor
 - % Mix of Liquid and Vapor
- Construction is connecting dots

- Using a PH Diagram
- Optimal Operating Point
- Minimize Flash Gas
- Comparing System Efficiency
- Optimal Operating point



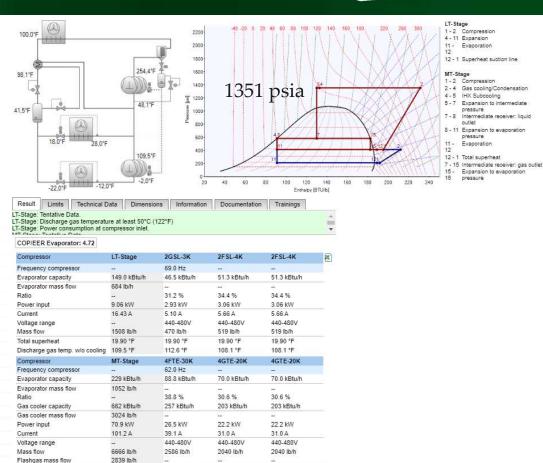
Using a PH Diagram

Optimal Operating Point



 The optimal transcritical operating point balances increased energy from high discharge pressure with less flash gas.

Carel +4000038EN


Minimize Flash Gas

Comparing System Efficiency

Bitzer Software

30.0 °F

257 °F

30.0 °F

257 °F

30.0 °F

1351 psia

254 °F

250 °F

Total superheat

optimal high pressure

Discharge gas temp, w/o cooling

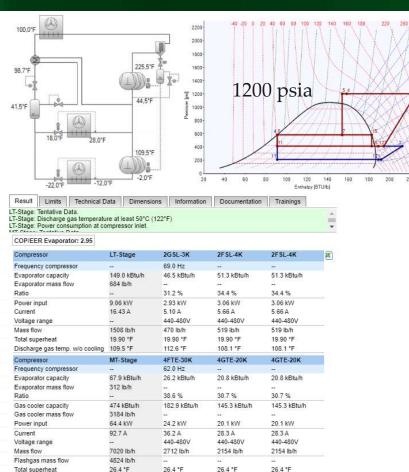
1-2 Compression

11 - Evaporation 12

4 - 5 IHX Subcooling

pressure
7 - 8 Intermediate receiver: liquid outlet
8 - 11 Expansion to evaporation pressure
11 - Evaporation

12 - 1 Total superheat
7 - 15 Intermediate receiver: gas outlet
15 - Expansion to evaporation
16 pressure


MT-Stage 1 - 2 Compression

12 - 1 Superheat suction line

2 - 4 Gas cooling/Condensation

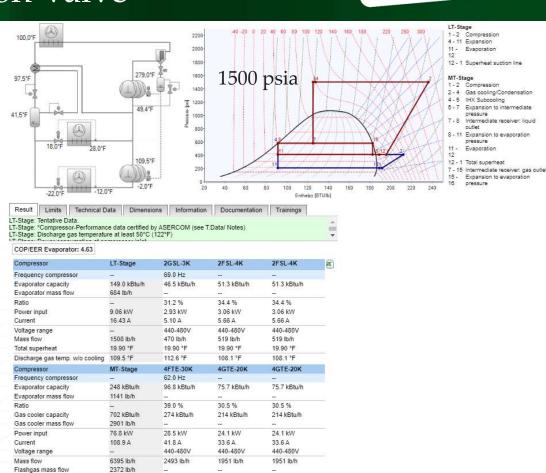
5 - 7 Expansion to intermediate

Comparing System Efficiency

226 °F

1351 psia

optimal high pressure


223 °F

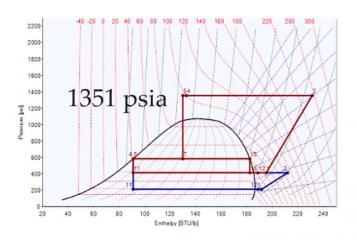
227 °F

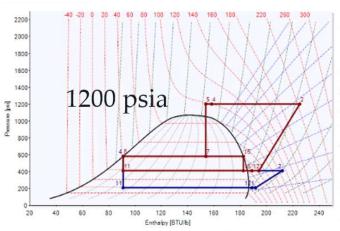
227 °F

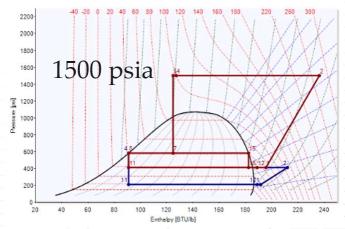
Comparing System Efficiency

31.3 °F

283 °F


283 °F


31.3 °F


Discharge gas temp. w/o cooling 279 °F

optimal high pressure

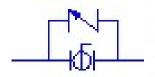
Optimal Operating Point

	Low Temp		
Gas cooler pressure	1351 psia	1200 psia	1500 psia
COP	4.72	2.95	4.63
Evaporator capacity	149.0 kBtu/h	149.0 kBtu/h	149.0 kBtu/h
Evaporator mass flow	684 lb/h	684 lb/h	684 lb/h
Power input	9.06 kW	9.06 kW	9.06 kW
Current	16.43 A	16.43 A	16.43 A
Mass flow	1508 lb/h	1508 lb/h	1508 lb/h
Total superheat	19.90°F	19.90°F	19.90°F
Discharge gas temp. w/o cooling	109.5°F	109.5°F	109.5°F

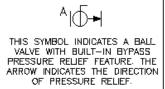
Optimal Operating Point

 The optimal transcritical operating point balances increased energy from high discharge pressure with less flash gas.

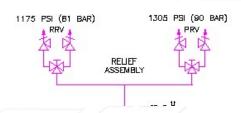
Medium Temp				
Gas cooler pressure	1351 psia	1200 psia	1500 psia	
COP	4.72	2.95	4.63	
Evaporator capacity	229 kBtu/h	67.9 kBtu/h	248 kBtu/h	
Evaporator mass flow	1052 lb/h	312 lb/h	1141 lb/h	
Gas cooler capacity	662 kBtu/h	474 kBtu/h	702 kBtu/h	
Gas cooler mass flow	3024 lb/h	3184 lb/h	2901 lb/h	
Power input	70.9 kW	64.4 kW	76.8 kW	
Current	101.2 A	92.7 A	108.9 A	
Mass flow	6666 lb/h	7020 lb/h	6395 lb/h	
Flashgas mass flow	2839 lb/h	4824 lb/h	2372 lb/h	
Total superheat	30.0°F	26.4°F	31.3°F	
Discharge gas temp. w/o cooling	254°F	226°F	279°F	
Optimal high pressure	1351 psia	1351 psia	1351 psia	


Additional control strategy

- Fan control- differential temperature
- Flash tank pressure
- Low flash tank pressure
- High flash tank pressure
- Maximum capacity

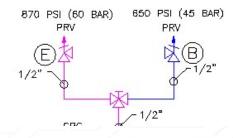


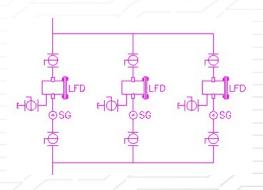
High Pressure Safety


Back check valves

Integral back check ball valves

Regulating relief valves

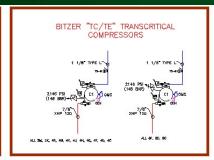


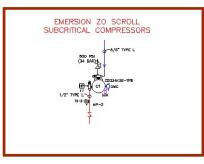


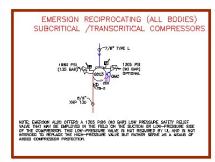
High Pressure Safety

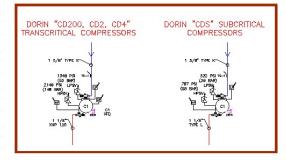
Relief valves for servicing

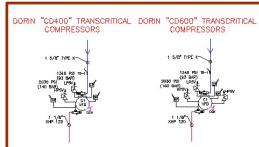
Administrative controlled component isolation

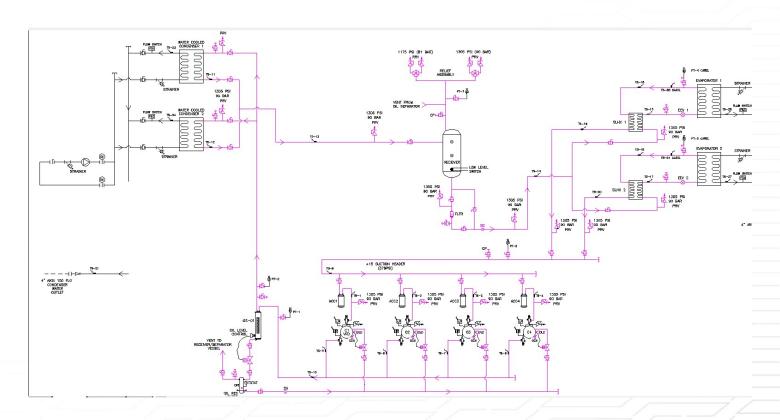


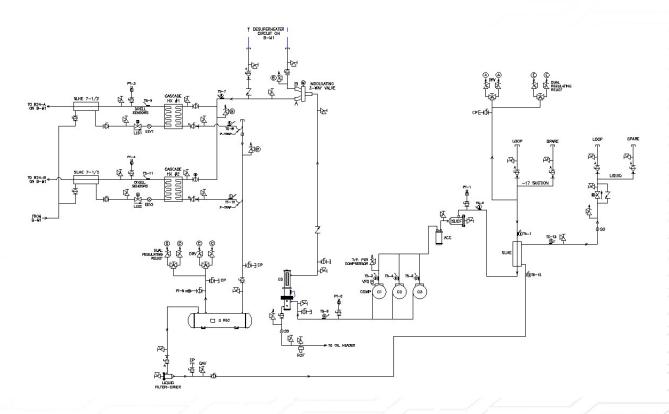



Compressor Safety Valves

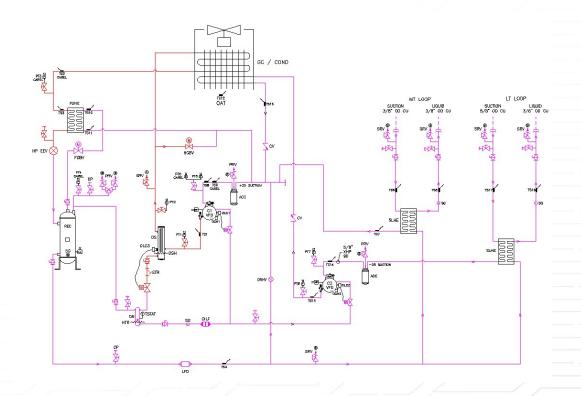




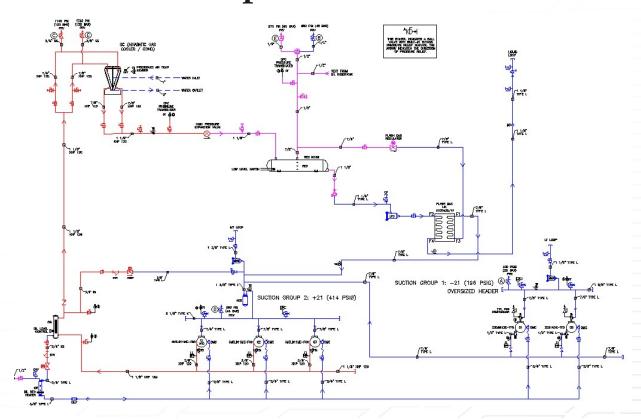




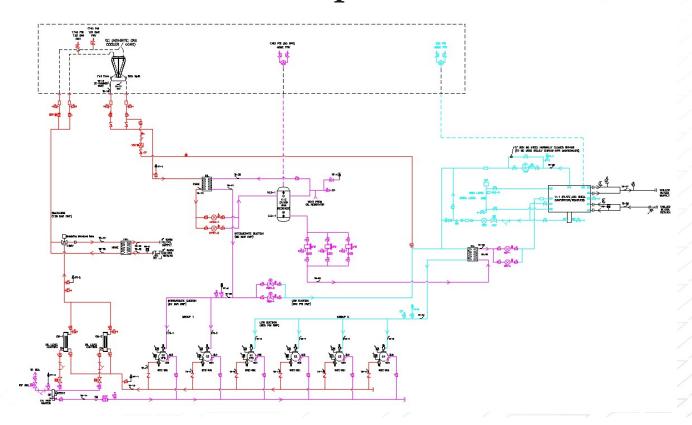
Subcritical – Water-Cooled



Subcritical – Cascade



Transcritical – Desuperheater



Transcritical – No Desuperheater

Transcritical – Parallel Compression

That's All Folks

Thank you for attending Questions?