Natural Refrigerant Training Summit

Building a Sustainable Workforce

Rack Control Introduction Chris Butler Application Specialist - CAREL

NORTH AMERICAN Sustainable Refrigeration Council

Natural Refrigerant Training Summit Thank you to our sponsors!

Premium Sponsors

COPELAND

A DOVER COMPANY

Basic Sponsors

Who We Are

A 501c3 nonprofit working to create a sustainable future for supermarket refrigeration by removing barriers to natural refrigerant adoption.

Goals

- Build a sustainable technician workforce
- Increase funding for natural refrigerant equipment
- Improve technology options, education, and

awareness

Chris Butler Nov. 2023

Holup, boss...

Technical Support

Online Info

Visit the CAREL website

<u>https://www.carelusa.com/</u>

Online Info

Visit the CAREL YouTube Channel

Online Info

Visit the CAREL Courses website

<u>https://learning.carel-deutschland.de/en/courses</u>

Be sure to click the "SIGN UP" button

Technical Services Phone & Email Support

- US Based Customers: 1-833-809-7267
- Canadian Based Customers:
 - 1-412-446-3646

- By Email: DIGITAL DIGITAL
- For Field Visit Request:
 - FIELD.SERVICES@CAREL.COM

SPARE PARTS

Where are we and what are we controlling?

Rack control!

CO2, Parallel compression, Loop Piping

This document and all of its contents are property of CAREL. All unauthorised use, reproduction or distribution of this document or the information contained in it, by anyone other than CAREL, is severely forbidden.

Distributed Control

Decentralized Control System

The job of the rack controller is to:

- Provide quality liquid
- Provide quality suction

A break in comms? So what! Things should keep running!

The job of the case controller is to:

Cool or not. Can regulate temperature

The job of the superheat controller is to:

- Regulate superheat
- Smooth Lines! No on/off control. "Floating" superheat.

CAREL

This document and all of its contents are property of CAREL. All unauthorised use, reproduction or distribution of this document or the information contained in it, by anyone other than CAREL, is severely forbidden

What are we using for rack control?

pR300T!

pR300T Hardware

pR300T Quick Summary

- Transcritical/Subcritical CO2
- Booster system
- Built in display and/or a handheld display
- Optional on board valve control
- Multiple boards can be connected together
- Wizard for initial programming/parameter setting
- Backup to controller, laptop, or USB drive
- Configurable I/O
- What you don't use you can't see
- Configurable to your application: Dual Temp (CO2 Booster) Medium Temp, Low Temp, Condenser Control
- ***Can be used as standalone HPV/Flash Gas valve controller***

WATCH OUT!! L1 = Medium Temp L2 = Low Tempalways!

pR300T

Watch Out!

Upper retaining tabs are fixed!

A few examples...

pR300T

Hmmmm....

This document and all of its contents are property of CAREL. All unauthorised use, reproduction or distribution of this document or the information contained in it, by anyone other than CAREL, is severely forbidden.

Networking

Distributed Control

This document and all of its contents are property of CAREL. All unauthorised use, reproduction or distribution of this document or the information contained in it, by anyone other than CAREL, is severely forbidden.

Network Example: pR300T Multi Board

This document and all of its contents are property of CAREL. All unauthorised use, reproduction or distribution of this document or the information contained in it, by anyone other than CAREL, is severely forbidden.

Network Example: pR300T w/ Driver & Exp. Board

Wiring: I/O

pRack – I/O Overview

- Universal I/O can be configured for different uses:
 - Temperature probes: NTC, PTC, PT1000
 - Active pressure/temperature/humidity probes
 - Ratiometric pressure probes 0-5 V
 - Current inputs, 0 to 20 mA or 4 to 20 mA
 - Voltage inputs, 0 to 1 Vdc or 0 to 10 Vdc
 - "Wet" and "dry" digital inputs
 - Analogue outputs, 0 to 10 Vdc, 10 Vdc to 0 or PWM
- Digital Outputs:
 - most, but not all, are Form A (normally open)
 - Optional SSR's

- Each connector is grouped by J##
- J## and individual pins are identified by silk screen on controller
- Where a wire lands is up to the programming and can be moved in most cases
- Yes, the gold silkscreen is hard to read

pR300T: Layout

Analog Inputs

Digital Inputs

 Most of the Digital Inputs are "wet", however, J3 and J20...

 Silk screened and identified in manual as "ID"

Analog Outputs

Identified as "Y#" on controller

"VG" is the voltage source for all Analog Outputs. Voltage at VG is regulated and output from each Y#

Use your meter to measure between VG0 and Y# to read the DC output

Relays

Sensor Connections

pR300T

fie d card

CAREL

This document and all of its contents are property of CAREL. All unauthorised use, reproduction or distribution of this document or the information contained in it, by anyone other than CAREL, is severely forbidden.

Pressure Sensors

To protect the sensor against damage from inducted overvoltage and incorrect use, the following measures are recommended:

Pressure transducers require removal **prior to vacuum test and cannot be exposed to a deep vacuum**

Avoid winding the cable in spirals, and adequately separate the cable from the power cable.

Receiver pressure: (SPKT00G1S0) 0–60 bar, 0–870 psig, 0-5V

MT Suction pressure: (SPKT00B6P0) 0-45 BARG, 0-650 PSIG, **0-5V**

MT Discharge pressure: (SPKT00D8C0), 0-150 bar, 0-2175 psig, **4 – 20ma**, Gas 1/4 MPT (straight thread, o-ring included)

Temperature Sensors

STANDARD TEMP. RESISTANCE READINGS ARE DIFFERENT THAN THE NTC**HT** SENSOR. **NTC 10K, BETA 3435**

Temp.	Resistance value			Temp.	Resistance value	
	Max.	Typical	Min.		Max.	Typical
°C	ΚΩ	ΚΩ	ΚΩ	°C	ΚΩ	ΚΩ
-50	344,60	329,50	314,90	1	26,65	26,13
-49	325,00	310,90	297,30	2	25,52	25,03
-48	306,60	293,50	280,90	3	24,44	23,99
-47	289,40	277,20	265,40	4	23,42	23,00
-46	273,40	262,00	251,00	5	22,45	22,05
-45	258,30	247,70	237,40	6	21,53	21,15
-44	244,20	234,30	224,70	7	20,64	20,30
-43	231,00	221,70	212,80	8	19,81	19,48
-42	218,60	209,90	201,60	9	19,01	18,70
-41	207,00	198,90	191,00	10	18,25	17,96
-40	196,00	188,50	181,10	11	17,51	17,24
-39	185,50	178,50	171,60	12	16,81	16,56
-38	175,60	169,00	162,60	13	16,14	15,90
-37	166,30	160,20	154,20	14	15,50	15,28
-36	157,60	151,90	146,30	15	14,89	14,69
-35	149,40	144,10	138,80	16	14,31	14,12
-34	141,70	136,70	131,80	17	13,75	13,58
-33	134,50	129,80	125,20	18	13,22	13,06
-32	127,70	123,30	119,00	19	12,72	12,56
-31	121,20	117,10	113,10	20	12,24	12,09
-30	115,20	111,30	107,50	21	11,77	11,63
-29	109,40	105,70	102,20	22	11,32	11,20
-28	103,90	100,50	97,20	23	10,90	10,78
-27	98,68	95,52	92,45	24	10,49	10,38
-26	93,80	90,84	87,97	25	10,10	10,00
-25	89,20	86,43	83,73	26	9,73	9,63
-24	84,85	82,26	79,74	27	9,38	9,28
-23	80,76	78,33	75,96	28	9,04	8,94
-22	76,89	74,61	72,39	29	8,72	8,62
-21	73,23	71,10	69,01	30	8,41	8,31
-20	69,77	67,77	65,82	31	8,11	8,01
-19	66,44	64,57	62,74	32	7,83	7,73
-18	63,30	61,54	59,83	33	7,55	7,45
-17	60,32	58,68	57,07	34	7,29	7,19
-16	57,51	55,97	54,46	35	7,04	6,94
-15	54,85	53,41	51,99	36	6,79	6,70
-14	52,33	50,98	49,65	37	6,56	6,47
-13	49,95	48,68	47,43	38	6,34	6,25
-12	47,69	46,50	45,32	39	6,12	6,03
-11	45,55	44,43	43,33	40	5,92	5,83
-10	43,52	42,47	41,43	41	5,72	5,63
-9	41,55	40,57	39,60	42	5,53	5,44
-8	39,69	38,77	37,86	43	5,34	5,26
-7	37,92	37,06	36,21	44	5,17	5,08
-6	36,25	35,44	34,64	45	5,00	4,91
-5	34,66	33,90	33,15	46	4,83	4,75
-4	33,15	32,44	31,73	47	4,68	4,59
-3	31,72	31,05	30,39	48	4,52	4,44
-2	30,36	29,73	29,11	49	4,38	4,30
-1	29,06	28,48	27,89	50	4,24	4,16
0	27,83	27,28	26,74	51	4,10	4,03
				52	3,97	3,90
				53	3,85	3,77
				54	3,/3	3,65
				55	3,61	3,54

5.1 Table of temperature-resistance values for NTC sensor 10K@25°C ß 3435

	Temp.	Resistance value			
Min.		Max	Typical	Min.	
KO	٩٢	KO	KO	KO	
25.62	56	3.50	3.43	3.35	
24.55	57	3 30	3 32	3.25	
23.54	58	3.28	3.22	3.15	
22.57	59	3.18	312	305	
21.66	60	3.09	3.02	2.95	
20.78	61	2.99	2.93	2.86	
1995	62	2.90	2.84	2,77	
1915	63	2,82	2.75	2.69	
18.39	64	2,73	2.67	2.61	
1767	65	265	2,59	2,53	
16.97	66	2,57	2.51	2.45	
1630	67	2,50	7.44	2,15	
15.67	68	7.47	236	231	
15,06	60	2,12	2,30	2.24	
14.48	70	2,25	2,20	217	
13.02	71	2,20	716	211	
13,32	77	2,22	2,10	2,05	
12.80	73	2,00	2,10	100	
12,09	74	2,09	1.08	1,99	
11.04	75	108	1.00	1,95	
11,51	76	1,90	1,92	1,07	
11,07	77	1,92	1,07	1,02	
1066	78	1,07	1,02	1,77	
10.27	70	1.76	1,77	1,72	
0.00	80	1,70	1,72	1,07	
9,90	91	167	1,67	1,02	
0.19	87	1,07	1,02	1,50	
9,10	02	1,02	1,50	1.40	
857	84	1,50	1,33	1,49	
0,52	00	1,04	1,45	1,45	
7.07		1,49	1,45	1,41	
7,52	97	1,40	1,71	1.22	
7,03		1,42	1.27	1.20	
7,30	00	1,30	1,24	1,30	
7,10	09	1,34	1,20	1,20	
6,61	01	1,21	1,27	1,23	
6,01	91	1,27	1,23	1,19	
6.15	92	1,24	1,20	1,10	
5.04	93	1,21	114	1,13	
5,54		114	1.11	1,107	
5,74	90	112	1.09	1,07	
5,24	90	1,12	1,00	1,04	
5,55	97	1,09	1,03	0.00	
4.00		1,00	1,02	0,99	
4.93	100	1,03	0.07	0,97	
4,03	100	0.09	0,97	0,94	
4,07	101	0,98	0.02	0,92	
4.36	102	0.90	0,92	0,09	
4.30	103	0,93	0,90	0,07	
4,22	104	0,91	0,88	0,85	
1,00	100	0,89	0,00	0,63	
3,90	105	0.87	0,84	0,81	
3,62	100	0.82	0,82	0,79	
3,70	108	0,82	0,80	0,77	
3,38	109	0,80	0,78	0,75	
3,46	110	0,79	0,76	0,73	

User Interface

Demo too!

Display: Buttons and Terminology

View alarms: press the alarm button once and use the scroll up or down button if multiple alarms are present. Reset alarms: press the alarm button again for 3 seconds

Terminology:

- Mask: Display screen
- Line: Group
- L1: Line 1, or Group 1

Pressing the menu button and entering the user password will allow you to access the IO list and functions. The default OEM password is 1234.

Pressing the enter button after the parameters are selected will allow you to make changes to the values.

CARE

Display: Rack Operation Overview Screens

Unit Overview Screens: Press enter then use the up or down arrows to view pressures, temperatures, and other operating values without logging in. Super helpful!

LOOK OUT!!!

Software Versions!

Password and Menus

pR300T manages three levels of passwords:

- 1. User
- 2. Maintenance
- 3. Manufacturer
- Each level includes the same rights as the lower levels
- Configurable
- Mess up? You can log in/out via F. Settings
- No.

User	User password	0000
Service	Service password	1234
Manufacturer	Manufacturer password	1234

Menus:

Branches of menu divided per functions: inside every branch there are parameters and variables relative to the specific function.

Y'all remember (Day Date x 4) + 12?

Main Menu – A. Unit Status

Main Menu – B. Inputs/Outputs

L1-DI Status Common low press

Status Logic

Function

Close

Not active

- Status: to see status and change configuration of all enabled inputs and outputs. The logic (NO/NC) can be changed. You'll see the status (what the controller is seeing at the input) change AND you can see if the function is Active or Not Active.
 - Manual management: bypass *enabled* outputs, respecting alarms, safety times, and start procedures. ***Only allowed if the controller is in the OFF mode.*** Includes vacuum function. Allows you to manually open HPV and Flash Gas Valve. Also helpful to verify wiring.
- **Test**: to bypass *any* output **without** timing, protection or safety function. ***Only allowed if the controller is in the OFF mode. Mode has adjustable timeout.***

Main Menu – C. Compressors

- I/O status: all I/O related to the compressors, check status and change settings.
- Regulation: regulation settings such as setpoint, differential, type of regulation, timings, etc.
- Working hours: to see number of hours the compressors are working or reset the counters.
- Energy Saving: Energy Saving Suite. All settings related to compressors energy saving functions.
- Alarms: all settings related to compressor alarms, both digital input and probes
- **Configuration**: all standard configuration parameters, timings, etc.
- Advanced: contain advanced parameters. Frequencies, non standard configuration, etc.

This document and all of its contents are property of CAREL. All unauthorised use, reproduction or distribution of this document or the information contained in it, by anyone other than CAREL, is severely forbidden

Main Menu – D. Fans, E. Other Functions

D. Fans:

- I/O status: all I/O related to the fans, check status, and change settings.
- **Regulation**: regulation settings such as setpoint, differential, type of regulation, timings, etc.
- Driver EVD: Not used.

E. Other Functions

Subcooling

Economizer

Liquid Injection

Oil

٠

٠

٠

- Energy Saving: All settings related to compressors energy saving functions.
- Alarms: all setting related to condenser alarms, both digital input and probes.
- **Configuration**: all standard configuration parameters, timings, etc.
- Advanced: contain all advanced parameters. Frequencies, non standard configuration, etc.

Other functions 1/83 Prg a.011 b.Subcoolin9 c.Economizer @@ pGD' user interface

- Heat Reclaim
- Generic Functions
- ChillBooster
- DSS
- Transcritical Settings

pR300T More Menus

F. Settings

Contains all the parameters for the main settings of the controller: passwords, language, supervisor parameters, etc.

G. Safety

All settings for common alarms, prevent, etc.

H. Info

Contains information about software version, firmware, BIOS and BOOT.

I. Setup

Contains all the parameters to reset the default configuration or restart from the start up. *****Most of this section requires the unit to be switched OFF via the software switches, Mask Ac02**

First Power Up

Wizard

CAREL

- Step-by-step guided procedure
- After the Wizard is complete, the controller is ready for work!

<u>WARNING</u>: if the boards do not have all the I/O needed for the selected configuration, wizard will signal error and users can decide if to continue or modify configuration.

WATCH OUT!!! SYSTEM OF UNIT MEASUREMENT CANNOT BE CHANGED AFTER WIZARD! METRIC (SI) OR IMPERIAL (US)

Wizard Step by Step

CAREL

This document and all of its contents are property of CAREL. All unauthorised use, reproduction or distribution of this document or the information contained in it, by anyone other than CAREL, is severely forbidden.

After the Wizard...

By going to *main menu -> inputs/outputs -> status ->* you can configure all of the inputs and outputs.

LI-DI Sta	tus <u>Baa56</u>
Common low	pressostat
PLB <mark>1</mark>	ID <mark></mark>
Status	Close
Lo9ic	NC
Function	Not active

L2-AI Status	s Bab05
PLB 🔟 U2	0-5V
-39.4	3psig
Upper value:	185.0psi9
Calibration:	-14.3PS19 0.0PS19

DO Status Compressor PLB Ø1	1	Bac02
Line relay	D0	Off
Logic		12(0)

AO Status Fans inver	rter
PLB 🚺	AO 🚍
Status	0.0%

Watch out! Some I/O can be accessed from multiple menus OR only from one menu!

Regulation & Rotation

Regulation & Rotation

Regulation Type

 Neutral zone, proportional band, proportional & integral band

Rotation Type, Timings, etc.

- FIFO, LIFO, Running time, custom
- Variable speed comp is ALWAYS first on, last off.
- Modulating devices ramp down as stages increase, providing a full spectrum of system capacity.

Devices Controlled

Compressors, fans

Regulation: Neutral Zone 1/3

Neutral Zone:

Used for both compressors and fans

A central zone in which:

- Compressors/fans are not activated or deactivated
- Central set point with differential on both sides
- Timings of starting and stopping
- Variable speed devices ARE modulated within this zone

Regulation: Neutral Zone 2/3

Narrow bands = fast and reactive systems, possible swings

Wide bands = slow and stable systems

CAREL

the maximum (100%) or

minimum (0%)

Regulation: Neutral Zone 3/3

Based on the current system operating point, the required CAPACITY the controller is calling for (remember, this is NOT the # of compressors) depends on TIMINGS. Since the controller is looking at the total capacity, the timings you enter are TOTALS, and therefore divided by the # of compressors you have.

Activation Zone ("Power load...")

- Minimum activation time from 0 to 100%
- Maximum activation time from 0 to 100%

Deactivation Zone (Power unload...")

- Minimum deactivation time from 100 to 0%
- Maximum deactivation time from 100 to 0%

CAREL

Based on the specific configuration of compressors or fans (number, sizes, etc.) the activation/deactivation times of the different compressors depend on how far the value is from the set point.

Regulation: Prop.+ Integral Band

Required capacity depends on the proportional and integral (adjustable).

Parameters:

- Setpoint
- Differential (this won't be divided by 2!)
- Time (in seconds)

High Differential (psig) = system slow and not reactive

Low Differential (psig) = system fast and reactive, possible instability

High Integral Time (seconds) = system slow to respond to instability

Low Integral Time (seconds) = system fast and reactive, possible instability

CAREI

Rotation

Part of the SW that reads the power capacity request from the regulation and tries to activate the right type or number of devices to make the active capacity as close as possible to the capacity request... In other words, lets match what we have to what we need.

Uses:

- Rotation type. FIFO, LIFO, running time, custom
- number and type of device available
- actual status of devices
- timings
- alarms
- sequence of activation and deactivation

Required capacity refers to:

- 0% = all available compressors off
- 50%= half of available compressors on
- 100% all available compressors on

Rotation of Variable Capacity Compressors

The rotation manages the activation of the **speed modulating device** considering

- minimum activation (min frequency)
- maximum activation (max frequency)
- nominal capacity
- nominal frequency
- increase and decrease times

The management is the same in case of:

- inverter
- digital scroll

Comp.Advan.Ca901Inverter configurationMininum voltage:0.00Maximum voltage:10.00Nominal freq.:50HzNominal power:10.0KwComp.Advan.Ca902Inverter configurationRising time:20sFalling time:10s	Min/Max voltage should "match" Min/Max frequency. In other words, if you want 2.5V (25%) as your minimum voltage, then your minimum
<u>Comp.Config. Cafl6</u> Inverter configuration Min.frequency: 30Hz Max.frequency: 60Hz	(25% of 60Hz).

Rotation – An Example

Comp 1: 30-60kW = 8.5-17T (102-205MBtu) Comp 2: 20kW = 5.7T (68MBtu) Comp 3: 20kW = 5.7T (68MBtu)

Compressor Alarms

Main Alarm Steps

		Example of value for MT side
HP Pressostat Switch	\rightarrow	115 barg (define by OEM)
HP Gas Cooler Alarm (by probe)	\rightarrow	110 barg
Prevent	\rightarrow	107 barg
P100%	\rightarrow	106 barg
Pmax		103 barg
HPV Setpoint	\rightarrow	
Min HPV Setpoint	\rightarrow	50 barg
Low GC pressure alarm	\rightarrow	20 barg
	\rightarrow	
Comp. regulation Setpoint		26 barg
0.4.055/Duran dawa		
Cut-OFF/Pump-down	\rightarrow	22 barg
Low Suction Pressure Alarm	\rightarrow	20 barg
LP Pressostat Switch	\rightarrow	18 harg (defined by OEM)

The bookends in the setting of software thresholds are:

- HP Pressure Switch
- LP Pressure Switch

Compressor Safety

- Compressors have individual alarms: Overload, Oil, H.P., L.P. and Generic.
- System Alarms: System HP, LP, Oil, Liquid Level, Inverter fault.

•

- Suction Superheat alarm: By strapping an NTC sensor to the compressor inlet, the pRack can
 monitor floodback. It can be set to turn the system off in the event of low superheat.
- H.P. Prevent feature: The pRack can be set to prevent the system from going off due to high discharge pressure.
 - At a preset pressure the controller will engage heat reclaim (if configured), then it will begin unloading the Rack to prevent shutdown. Additional measures also taken within programming dependent upon configuration.

Anti Liquid Return feature: if no compressor is operable, the anti liquid return relay remains disabled.

Piston or scroll compressors:

- maximum 4 alarms (DI) per compressor
- Generic, HP, LP, overload/Klixon, oil
- the alarms can be grouped as desired on the same DI: 2 digital inputs ID1 = HP+LP

ID2 = overload/Klixon + oil

 What the heck does this mean? All you're doing is grouping the alarms for display purposes

Common features

- All alarms can have automatic or manual reset
- All alarms are enabled also if compressor is off
- All alarms have start up delay and activation delay
- Start-up delay is reset at every switch on of the compressor
- Settable priority of alarms: SERIOUS WARNING, activation of different alarm relays
- Only two different alarms to supervisor SERIOUS WARNING, description of alarms is conveyed by dedicated variable.

<u> 1-Comp.Alarms Cae24</u>

Suction hi9h pressure alarm: ABSOLUTE Threshold: 35.0bar9

<u>L1-Comp.Alarm</u>	is Cae25
Suction high	
pressure alarm diff.	1.0bar9
Alarm delay:	120s

L1-Comp.Alar	r <u>ms Cae41</u>
Hi9h dischar9	Je
Pressure alar	rm
Threshold:	110.0bar9
Diff.:	5.0bar9
Alarm delay:	Øs

• High Suction pressure alarm by probe (threshold and type threshold: ABSOLUTE or RELATIVE)

- Alarm will be issued at pressure > 35 barg and it will be reset at 34 barg.
- This alarm forces the compressors at max power

- High Discharge pressure Alarm by probe (threshold, differential and delay).
- <u>This mask appear ONLY if a discharge pressure</u> probe has been configured.

CAREL

• This alarm forces OFF the compressor.

L1-Comp.Alarms Cae42 Low dischar9e Pressure alarm Threshold: 44.0bar9 Diff: 5.0bar9 Alarm delay: 0s

L1-Comp.Alarms Cae29	
Low superheat alarm	
Enable: ONLY ALARM	
Threshold: 3.0K	
Alarm diff.: 1.0K	
Switch off comp.: NO	
Reset: MANUAL	
Alarm delay: 30s	

Ll-Comp.Alarms Cae40 Warnin9 inverter			
Switch-off comp.1:	NO		
Reset: MANU	AL		
Alarm delay:	0s		

- Low Discharge pressure Alarm by probe
- <u>This mask appear ONLY if a discharge pressure probe has been</u> <u>configured.</u>
- This alarm does not do any actions

- Low SH alarm: disabled, ONLY ALARM, or WARNING + ALARM
- Alarm: Low SH with Comps running (delay will be Alarm delay).
- Warning: Low SH with Comps running (delay will be half of Alarm delay)

CAREL

Warning Inverter Alarm

Gas Cooler Control

Gas Cooler Control

- Fan operation can be tied directly to compressor operation or as stand alone devices.
- Fans may be managed with LIFO, FIFO, Time, or custom rotation in the same way as the compressors.
- Controlled by Gas Cooler Outlet temperature in current applications.

G.Cooler.Reg. Dab01 Regulation by: TEMPERATURE Regulation type: PROPORTIONAL BAND	G.Cooler.Reg. Dab02 Setpoint limits Minimum: 5.0°C Maximum: 25.0°C

	G.Cooler.Re9. Dab03 Setpoint: 25.0°C	When outlet at this temperature fans are running 100%
--	---	---

CARE

Fan operation with modulating device

Fans can be controlled by a modulating device.

Parameters can be set on screens Dag02 and Dbg02

Minimum modulating output value 0 V, maximum value 10 V, or vice versa

Minimum modulating device capacity 0 %, maximum 100 %.

Reversing Max/Min power refer. will change the output to a 10 – 0 Vdc signal

Modulate device config Min out value: 0.00 Max out value: 10.00 Min.power refer.: 0% Max.power refer.: 1 002

High Pressure Prevention

Controller does what it can to prevent high pressure switch from tripping

Prevent procedure to avoid high condensing pressure alarm

In case there are heat reclaim or chillbooster, they can be used as first stage of prevent.

pR300T: Gas Cooler Alarms

Gas C.Alarms	Dae01	
Gas cooler pressure hi9h alarm: Alarm delay:	ABSOLUTE 60s	•
Gas C.HIarms	Ваейр	
Hi9h 9as cool alarm thr.:	er press. 110.0bar9	•
Alarm diff.:	5.0bar9	
Gas C.Alarms	Dae03	•
Gas cooler pressure low alarm:	ABSOLUTE	•

30s

Gas C.Ala	rms Dae05
Common fan	overload: YES
Delay: Reset:	30s MANUAL

Alarm delay:

- High Gas Cooler pressure alarm by probe (threshold and type threshold: ABSOLUTE or RELATIVE)
- This alarm force the GC fans at max power and shut off the compressors
- Low Gas Cooler pressure Alarm by probe
- This mask appears ONLY if discharge press probe is configured.
- This alarm does not do any actions

- Fan Common Overload by DI
- YES: only one common overload available and NO action to fans in alarm state
- NO: can be configured an Overload DI for each Fan.
- The Fan1 Overload shuts off the fan output only if it is not common with other fans

High Pressure Valve (HPV)
How do we drive valves?

<u>**pR300T CO**</u>₂ can control HPV/RPRV (Flash Gas Bypass) valves via an EVD Evo driver, an onboard driver, or via a 0 -10Vdc signal.

ICMTS

Transcritical CO₂ cycle

CO₂ specific components

- **Gas cooler**: equivalent of condenser, so called because in transcritical conditions there is no condensation but gas cooling
- High pressure valve (HPV): controls gas cooler pressure
- Receiver pressure regulation valve (RPRV): also called flash gas valve, controls receiver pressure
- **Optional Parallel compressor**: controls receiver pressure in behalf of the RPRV

High Pressure Valve management

- HPV managed according to the zone identified based on Gas Cooler outlet temp and gas cooler pressure
- Minimum gas cooler pressure, less compressor work
- Adjustable limits, speed, standby, and backup positions of the HPV
- Alarms for troubleshooting and monitoring ٠

High pressure proport. zone(based on F Point B P12 = Pott(T12) = 77 bar Point C P23 = Psat(T23+SBC) = 64 bar oint C as beforeTmin = 1°C Psat=(Tmin+SBC) = 41 bar } Point D ow temp proportional zone (based on]

Pmin = 40 bar If P<Pmin then HPV closes to avoid too low P on compressor

Note: all zones are calculated basing on Temperature, with the exception of the high press. proportional zone

1. Transcritical Zone

Calculation of the optimal Gas Cooler pressure to maximize COP. PI regulation to keep HPV pressure optimal setpoint

2. Intermediate Zone

PI regulation for a smooth transcritical to subcritical transition

3. Subcritical Zone

PI regulation of the HPV valve to keep a subcooling setpoint

Safety zone

Above a set pressure the HPV valve open proportionally to avoid pressure increase

Trans.Settin9s Eib01

Enable HPV valve management: YES Setpoint calculation algorithm: CUSTOM

(rans.Settings	Eib02
Min.HPV openin9 Durin9 ON:	Perc. 0.0%
durin9 OFF:	0.0%

Trans.Setting	9s Eib32
Max.HPV valve percenta9e:	openin9 100.0%
Max.delta:	10.0%

- Enable/disable HPV management.
- Setpoint calculation is CUSTOM and cannot be modified.

Minimum Opening %:

- **During ON**: while the UNIT is ON (by parameters, DI or supervisor)
- **During OFF:** while the UNIT is OFF (by parameters, DI or supervisor)
 - Max opening percentage that can be taken on by HPV valve during the regulation (while the UNIT is ON).

CAREL

• Max delta Max allowed variation of the valve position in one shot.

(rans.Settin9s	Eib03
HPV valve Pre-pos.value:	50.0%
Pre-pos.time:	5s

- Prepositioning of HPV valve after that unit enters in ON status.
- HPV valve remains at a fixed position for the pre-positioning time.
- This procedure is reactivated whenever the unit goes into OFF status or the HPV valve moves into the minimum position due to all compressors being turned off (optional).

• Graph that summarize the different regulation zones of HPV valve.

CAREL

Modify each regulation zone of HPV valve.

Number of samples:

- "**Delta**" is the subcooling used by the system to calculate the setpoint in the subcritical zone.
- "Coeff.1" is the line design ratio. By decreasing the ratio, with the same Tgc_out, the optimal HPV setpoint will decreases.

- Proportional and Integral time used to control the HPV.
- Proportional identifies the HPV valve opening variation for every 1 barg change in the Gas Cooler pressure.
- Filter that can be enabled to avoid fluctuations in the Gas Cooler pressure. Could be used to correct any electromagnetic noises presented in the GC_Out_temperature.

Trans.Settings Eib28

Maximum HPV safety setpoint: 90.0bar9 Minimum HPV setpoint: 40.0bar9 Enable low temperature control: NO

- Max HPV safety setpoint: max allowed value other functions try to increase the setpoint (protections of the receiver pressure by HPV). In normal operating conditions this can be up to Pmax (Fhb25).
- Min HPV setpoint: min value allowed in running mode.
- Enable low temperature control enable the Low temp proportional zone.

• Safety position of HPV in case of some fault (broken Gas Cooler outlet temp. probe or broken Gas Cooler pressure probe)

T<u>rans.Settings Eibl1</u> Safeties Delta temp. with 9as cooler probe error: 3.0°C

- Offset to add to the External Temperature reading in case of Gas Cooler temp. probe error.
- Auto switch on ext. temp. must be enabled on mask Dag14.

T rans.Settin9s Eibl2 Safeties Enable HPV safeties by receiver press.: YES
Trans.Settin9s Eib13 Safeties
Hi9h receiver pressure threshold: 60.0bar9 Max receiver pressure: 70.0bar9 Incr.set.HPV: 10.0bar9
Trans.Settin9s Eib14 Safeties
Low receiver pressure threshold: 35.0bar9 Min receiver pressure: 29.0bar9 Decr set HPU: 10 0bar9
Trans Settings Eib15 Safeties
Force closing when compressor OFF: NO
Closin9 delay after compressor OFF: 10s

- Parameter to enable some actions in the HPV valve to prevent High and Low pressure conditions in the receiver (see masks Eib13 and Eib14)
- If the receiver pressure will rises above the threshold, a proportional offset will be added to the HPV setpoint in order to close the HPV. For example: start at a 0 bar offset @60barg and scale up to a max 10 bar offset @70barg.
- If the receiver pressure falls below the threshold, a proportional offset will be subtracted to the HPV setpoint in order to open the HPV. For example: start at a 0 bar offset @35barg and scale up to a max 10bar offset @29barg.
- Parameter to **enable** closure of HPV when compressor is OFF. The HPV closing position will match the value set as min HPV position during OFF.

CAREL

• **Delay** to close the HPV valve after the compressor switch OFF.

Flash Gas Bypass Valve (RPRV, Receiver Pressure Regulating Valve)

Receiver Pressure Regulation Valve management

- **PI regulation** to maintain receiver pressure at settable setpoint
- Settable limits, speed and stand-by and backup positions of the valve
- **Debug** and monitoring alarms
- High and low receiver pressure safety functions
- High receiver pressure alarm cut off compressors
- Embedded algorithm with 0-10V output, compatibility with all kind of valve in the market using EVD EVO driven by 0-10V input
- Backup/integration function of a secondary RPRV valve

<u> Trans.Settin9s Eib18</u>

Enable RPRV valve mana9ement: YES

Trans.Settin9s	Eib19	
Min.RPRV openin9 durin9 ON:	Perc. 0.0%	
Durin9 OFF:	0.0%	

• Mask where it is possible to enable/disable the RPRV management.

 Min. opening percentage that can be taken on by RPRV: During ON: while the UNIT is ON (by parameters, DI or supervisor) During OFF: while the UNIT is OFF (by parameters, DI or supervisor)

<u> (rans Settings</u>	1520
Pre-pos.value: :	50.0%
RPRV valve Pre-pos.time:	5s
Start from prepos	NO NO

- Prepositioning of RPRV valve after that unit enters ON status. RPRV valve remains at a fixed position for the pre-positioning time.
- This procedure is reactivated whenever the unit goes to the OFF status or the RPRV valve moves into the minimum position due to all of the compressors being turned off (optional).

<u> Trans.Settin9s Eib21</u>

Maximum openin9	RPRV Perce	valve entage: 100.	.0%
Max.delt	a:	10.	0×

Trans.Sett Regulation	in9s Eib22
CO2 receive	r pressure
setpoint:	35.0bar9
Prop.9ain:	20%/bar9
Int.time:	60s

Trans.Settings Eib23 Safeties Safety RPRV valve Position: 50.0% Trans.Settings Eib24 Safeties Force closing when compressor OFF: YES

Delay closin9 after compressor OFF: 10s

- Max opening percentage that can be taken on by RPRV valve during the regulation (while the UNIT is ON).
- Max allowed variation of the valve position in one shot.
- Receiver pressure setpoint (RPRV setpoint).
- Proportional coefficient and Integral time used for the RPRV. Proportional coefficient identify the RPRV valve opening variation for every variation of 1barg in the receiver pressure.
- Safety position of RPRV valve in case of a fault (Receiver pressure probe broken).

• Enables the closure of RPRV valve when comp is OFF. The RPRV closing position will match with the value set as min RPRV position during OFF.

CAREL

Delay to close the RPRV valve after the compressor switch OFF.

Trans Settings Eib25 High receiver Pressure alarm Trheshold: 45.0barg Diff.: 5.0barg Belay: 30s Reset: MANUAL Switch off compr.: NO

- High receiver pressure alarm settings (threshold, differential, delay, reset).
- If "switch off compressor: NO" has been configured, no actions will be done in case of alarm.

Thans Se RPRV Setr	• comp. OFF
Receiver diff.:	press.setp. 10.0bar9
Time:	60sec

- This mask will appear only if the "force closing of RPRV with comp. off" has been enabled (mask Eib24).
- RPRV valve will be closed only if Receiver pressure < (setpoint+1/2 offset) and it will stay closed until the pressure increases above setpoint + offset.

CARE

• As soon as the pressure reaches this value, this value becomes the new working setpoint and in 60 sec it will bring to the original value (setpoint).

Other functions

pR300T: Double System Synchronization

- Optimization of system operation
- To avoid simultaneous peaks on different lines (3 lines)
- To synchronize the operation of two lines in booster systems:
 - if the low temperature line is active, then the medium temperature line must be active (forcing on compressors or pumping down compressors)
 - if the medium temperature line cannot be active due to technical problems/faults, then the low temperature line must **not** be active

Generic Functions

The generic functions available for each board are:

- 5 digital thermostats (ON/OFF) DO
- 2 modulating thermostats AO

Regulation variables can be analog inputs not used (generic probes) or internal system variables with specific threshold and differential.

Enabling variables can be digital inputs not used (generic DI) or internal system variables (mainly alarms).

Gen.Fun.Sta9es Efa06 Gen.sta9e n.1 PLB1	
Regulation variable: PROBE A	
Mode: <mark>Gen.Fun.Sta9es</mark> Gen.sta9e n.1	PE86 PLB1
Regulation variab SUCT.PRESS.(L2)	le:
Mode: D	IRECT

Gen.Fun.Sta9es Efa07 Gen.sta9e n.1 PLB1	
Enable: DIGITAL INPUT F	
Descr <mark>Gen.Fun.Sta9es</mark> Descr <mark>Gen.sta9</mark> e n.1	Effald7 PLB1
Enable: AL.COND.PRESS.L(L	1)
Description: SKIP	

USB and RHEC Manager <u>Retail High</u> <u>Efficiency Controllers Manager</u>

Connecting to pRack

RS485 Converter with telephone connector: **CVSTDUTLF0 to J10**

USB-B to USB-A cable to pRack

USB drive to pRack

Using USB Drive – What Can You Do?

- 1. Download logs from controller.
- 2. Download/Upload the Application; AKA Software.

5 BKP00_01			
APPL_PCO.DWL	10/14/2001 6:25 PM	DWL File	3,328 KB
FILE_DEV.DEV	10/14/2001 6:31 PM	DEV File	14 KB

3. Download/Upload Parameter Settings (setpoints). This is also known as the .DEV file. Shown as "Non Volatile Memory" in controller.

4. Download/Upload "pCO". This is everything except logs and boot file.

Y00 01	APPL_PCO.DWL	11/8/2022 1:31 AM	DWL File	3,328 KB
_	BIOS_PCO.BIN	11/8/2022 1:38 AM	BIN File	704 KB
	FILE_DEV.DEV	11/8/2022 1:40 AM	DEV File	14 KB

Using USB Drive - RULES

File names

In order to be recognised, the names of the directories and files on the pendrive must have no more than 8 characters; the controller makes no distinction between upper-case and lower-case characters. However, during DOWNLOAD the names of the directories created by the controller on the pendrive are always in upper-case.

• Tested and long filenames WORK on new software! Keep directory names at 8 characters

- Always include software version in *.dev file name
- If keeping backups from multiple job sites, think about how you want to name these folders
- ALWAYS MAKE SURE SOFTWARE VERSION (APPLICATION VERSION) AND *.DEV FILE VERSION MATCH

LOOK OUT!!!

If downloading from a multi-pRack setup, you MUST switch the controller off via keyboard and disconnect the pLAN connection at one end

This document and all of its contents are property of CAREL. All unauthorised use, reproduction or distribution of this document or the information contained in it, by anyone other than CAREL, is severely forbidden.

LOOK OUT!!!

File names....ALWAYS INCLUDE SOFTWARE VERSION!! This can be found in the rack controller or from the rack manufacturer

YES!! Customer, Site, Refrigerant, Rack ID, and Software Version

	1	1	I
Aldi_GooseCreek_CO2_PR1_v428B.dev	10/11/2022 4:02 PM	DEV File	14 KB
Aldi_GooseCreek_CO2_PR2_v428B.dev	10/11/2022 4:02 PM	DEV File	14 KB
GooseCreek_CO2_1.dev	4/22/2022 4:55 PM	DEV File	14 KB
GooseCreek_CO2_2.dev	4/22/2022 4:55 PM	DEV File	14 KB

NOPE!! Not specific enough!

LOOK OUT!!!

Software Versions!

Using USB Drive

1. Connect the USB drive to the pRack

USB key

2. Press and hold the "Alarm" and "Enter" buttons together for about 3 seconds. The system option menu will display. Use the down arrow button to scroll to "Flash/USB Memory". Press Enter.

Using USB Drive – Download – pCO to pen

1. Select Download

2. Select Download type:

CAREL

3. Follow screen directions

Using USB Drive – Upload – pen to pCO

1. Select USB Pen Drive

2. Select Upload (pen -> pCO

3. Select MANUAL mode

4. Scroll through help screen

 Select file or folder you want to upload by pressing enter. A "★" will appear next to the file you select. Press the PRG ("target") button

CAREL

6. Wait and unit will reboot

Upload complete Remove USB key and please wait

Using USB Drive - Errors

Try another USB drive

No USB disk or PC connected Press ESC or insert key/cable

USB drive not connected, reinsert, or try another USB drive

Other errors may mean you're trying to load a parameter file written for a different software version

Unstable Gas Cooler pressure

EFFECT	POSSIBLE CAUSE	SOLUTION
Unstable Gas Cooler pressure	Wrong configuration of HPV PID (proportional too high and integral time too low)	 Check and adjust the HPV PID (decrease the proportional and increase the integral time)
	Ineffective filter on the reading of ToutGC probe	Check and adjust the filter of ToutGC
	Unstable HPV set point	 Check that the calculation of HPV set point is stable; otherwise keep it stable keeping stable the Gas Cooler fans
	When a placement of Ope Opelan	Observice that was seed as make here here a slaved in
	probe	 Check that gas cooler probe has been placed in the right position (not affected by external conditions)

The Gas Cooler pressure does not reach setpoint

EFFECT	POSSIBLE CAUSE	SOLUTION
The Gas Cooler pressure does	The type of valve set is incorrect	Check and correct the type of valve parameter
not reach the set point	The HPV valve is connected incorrectly (rotates in reverse)	 Check the movement of the valve by placing it in manual control and closing or opening it completely. If the movement is reversed, check the electrical connections
	Stator broken or connected incorrectly	 (for Carel ExV only) Disconnect the stator from the valve and the cable and measure the resistance of the windings using an ordinary tester. The resistance of both should be around 36 ohms. Otherwise replace the stator. Finally, check the electrical connections of the cable to the driver/ controller
	Wrong configuration of PID parameter	Check and adjust the PID parameters in order to increase the speed of the valve
	Leakage from HPV valve when it is closed	 Check that there is no transit of refrigerant through the valve when it is closed. If there is a leakage replace the valve

High CO2 Receiver pressure (1/2)

EFFECT	PROBLEM/ SCENARIO	POSSIBLE CAUSE		SOLUTION
High CO2 receiver pressure (too far 	The type of valve set is incorrect The RPRV valve is connected incorrectly (rotates in reverse)	•	Check and correct the type of valve parameter Check the movement of the valve by placing it in manual control and closing or opening it completely. If the movement is reversed, check the electrical connections	
	Stator broken or connected incorrectly	•	(for Carel ExV only) Disconnect the stator from the valve and the cable and measure the resistance of the windings using an ordinary tester. The resistance of both should be around 36 ohms. Otherwise replace the stator. Finally, check the electrical connections of the cable to the driver.	
	Driver and RPRV valve are not synchronized (the valve opening shown from the driver does not match with the real position of the valve)	•	Switch off and switch on the pRack or stop and then start again the pRack regulation	
		Wrong sizing of the RPRV valve	•	Check the RPRV valve selection

High CO2 Receiver pressure (2/2)

EFFECT	PROBLEM/ SCENARIO	POSSIBLE CAUSE		SOLUTION
High CO2 receiver	According to the pRack info the RPRV valve	Wrong configuration of PI parameter	•	Check and adjust the PI parameters in order to increase the speed of the valve
(too far	opening is too low or it is	Receiver safety procedure not configured	•	Check and configure the receiver safety procedure
from the set point)	always closed	Set Point HPV too low	•	Check and adjust the configuration of HPV valve in order to increase the HPV set point

Troubleshooting Low CO2 Receiver pressure (1/2)

EFFECT	PROBLEM/ SCENARIO	POSSIBLE CAUSE	SOLUTION
Low CO2 receiver	According to the pRack info	The type of valve set is incorrect	Check and correct the type of valve parameter
pressure (too far from the	the RPRV valve is working properly	The RPRV valve is connected incorrectly (rotates in reverse)	• Check the movement of the valve by placing it in manual control and closing or opening it completely. If the movement is reversed, check the electrical connections
set point)	 Stator broken or connected incorrectly (for Carel ExV only) Disconnected from the valve and the cable a the resistance of the windings ordinary tester. The resistance should be around 36 ohms. Correplace the stator. Finally, check the electrical conthe cable to the driver. 	 (for Carel ExV only) Disconnect the stator from the valve and the cable and measure the resistance of the windings using an ordinary tester. The resistance of both should be around 36 ohms. Otherwise replace the stator. Finally, check the electrical connections of the cable to the driver. 	
		Drive and RPRV valve are not synchronized (the valve opening shown from the driver does not match with the real position of the valve)	 Switch off and switch on the pRack or stop and then start again the pRack regulation
		Wrong sizing of the RPRV valve	Check the RPRV valve selection
		Leakage from RPRV valve when it is closed	• Check that there is no transit of refrigerant through the valve when it is closed. If there is a leakage replace the valve

Low CO2 Receiver pressure (2/2)

EFFECT	PROBLEM/ SCENARIO	POSSIBLE CAUSE	SOLUTION
Low CO2 receiver	According to the pRack info the	Wrong configuration of PI parameter	Check and adjust the PI parameters in order to increase the speed of the valve
pressure (too far	RPRV valve opening is too High	Receiver safety procedure not configured	Check and configure the receiver safety procedure
from the set point)		Set Point HPV too High	 Check and adjust the configuration of HPV valve in order to reduce the HPV working set point If it happens during the commissioning, it is possible to decrease temporarily the Pcritic of transcritical zone or increase the min opening HPV during on
		Insufficient refrigerant	Check that there is enough refrigerant inside the circuit; otherwise charge the circuit

Reference
Regulation Proportional + Integral

kp: proportional gain \rightarrow is <u>inversely proportional</u> to the <u>Regulation Differential</u>

For example:

• Diff = 1 barg

For a pressure change of 1 barg, a power request change of **50%** for proportional factor

• Diff = 10 barg

For a pressure change of 1 barg, a power request change of <u>5%</u> for proportional factor

Low Differential → system fast and reactive, possible instability

High Differential → system slow and not very reactive

Regulation Proportional + Integral

Ti: integral time: the time of integration needed to bring back the regulation variable to the setpoint

For example:

Setpoint = 1barg
ActualPressure= 2 bargIntegral _action = $\frac{kp \cdot (SetP - Actualpressure)}{Ti} \left[\% \right]$

Case 1:

- Diff = 5 barg \rightarrow Kp = 10%
- Ti = 10 sec → Power request will increase 1% every second until setpoint is reached

Case 2:

- $Diff = 5 barg \rightarrow Kp = 10\%$
- Ti = 40 sec → Power request will increase 0.25% every second until setpoint is reached

high Ti \rightarrow system slow to reply to system instability

low Differential → system fast and reactive, possible instability

pR300T: Line 1 – Optimal pressure

CAREL

Visit natref.carel.com